376 research outputs found

    Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in ataxin-3 (SCA3, MJD1) protein. In biochemical experiments we demonstrate that mutant SCA3exp specifically associated with the type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1), an intracellular calcium (Ca2+) release channel. In electrophysiological and Ca2+ imaging experiments we show that InsP3R1 are sensitized to activation by InsP3 in the presence of mutant SCA3exp. We found that feeding SCA3-YAC-84Q transgenic mice with dantrolene, a clinically relevant stabilizer of intracellular Ca2+ signaling, improved their motor performance and prevented neuronal cells loss in pontine nuclei and substantia nigra regions. Our results indicate that deranged Ca2+ signaling may play an important role in SCA3 pathology and that Ca2+ signaling stabilizers such as dantrolene may be considered as potential therapeutic drugs for treatment of SCA3 patients

    Molecular basis of proton block of L-type Ca2+ channels.

    Full text link

    Mutational re-modeling of di-aspartyl intramembrane proteases: uncoupling physiologically-relevant activities from those associated with Alzheimer\u27s disease

    Get PDF
    The intramembrane proteolytic activities of presenilins (PSEN1/PS1 and PSEN2/PS2) underlie production of beta-amyloid, the key process in Alzheimer\u27s disease (AD). Dysregulation of presenilin-mediated signaling is linked to cancers. Inhibition of the gamma-cleavage activities of PSENs that produce Abeta, but not the epsilon-like cleavage activity that release physiologically essential transcription activators, is a potential approach for the development of rational therapies for AD. In order to identify whether different activities of PSEN1 can be dissociated, we designed multiple mutations in the evolutionary conserved sites of PSEN1. We tested them in vitro and in vivo assays and compared their activities with mutant isoforms of presenilin-related intramembrane di-aspartyl protease (IMPAS1 (IMP1)/signal peptide peptidase (SPP)). PSEN1 auto-cleavage was more resistant to the mutation remodeling than the epsilon-like proteolysis. PSEN1 with a G382A or a P433A mutation in evolutionary invariant sites retains functionally important APP epsilon- and Notch S3- cleavage activities, but G382A inhibits APP gamma-cleavage and Abeta production and a P433A elevates Abeta. The G382A variant cannot restore the normal cellular ER Ca(2+) leak in PSEN1/PSEN2 double knockout cells, but efficiently rescues the loss-of-function (Egl) phenotype of presenilin in C. elegans. We found that, unlike in PSEN1 knockout cells, endoplasmic reticulum (ER) Ca(2+) leak is not changed in the absence of IMP1/SPP. IMP1/SPP with the analogous mutations retained efficiency in cleavage of transmembrane substrates and rescued the lethality of Ce-imp-2 knockouts. In summary, our data show that mutations near the active catalytic sites of intramembrane di-aspartyl proteases have different consequences on proteolytic and signaling functions

    Two-dimensional enrichment analysis for mining high-level imaging genetic associations

    Get PDF
    Enrichment analysis has been widely applied in the genome-wide association studies (GWAS), where gene sets corresponding to biological pathways are examined for significant associations with a phenotype to help increase statistical power and improve biological interpretation. In this work, we expand the scope of enrichment analysis into brain imaging genetics, an emerging field that studies how genetic variation influences brain structure and function measured by neuroimaging quantitative traits (QT). Given the high dimensionality of both imaging and genetic data, we propose to study Imaging Genetic Enrichment Analysis (IGEA), a new enrichment analysis paradigm that jointly considers meaningful gene sets (GS) and brain circuits (BC) and examines whether any given GS-BC pair is enriched in a list of gene-QT findings. Using gene expression data from Allen Human Brain Atlas and imaging genetics data from Alzheimer's Disease Neuroimaging Initiative as test beds, we present an IGEA framework and conduct a proof-of-concept study. This empirical study identifies 12 significant high level two dimensional imaging genetics modules. Many of these modules are relevant to a variety of neurobiological pathways or neurodegenerative diseases, showing the promise of the proposal framework for providing insight into the mechanism of complex diseases

    Fast Inhibition of Glutamate-Activated Currents by Caffeine

    Get PDF
    Background: Caffeine stimulates calcium-induced calcium release (CICR) in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. Methodology/Principal Findings: Using the whole-cell patch-clamp technique we found that caffeine (20 mM) reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs) in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM) did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. Conclusions/Significance: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses

    Endoplasmic reticulum Ca2+-homeostasis is altered in small and non-small cell lung cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of differences in the cellular physiology of malignant and non-malignant cells is a prerequisite for the development of cancer treatments that effectively kill cancer without damaging normal cells. Calcium is a ubiquitous signal molecule that is involved in the control of proliferation and apoptosis. We aimed to investigate if the endoplasmic reticulum (ER) Ca<sup>2+</sup>-homeostasis is different in lung cancer and normal human bronchial epithelial (NHBE) cells.</p> <p>Methods</p> <p>The intracellular Ca<sup>2+</sup>-signaling was investigated using fluorescence microscopy and the expression of Ca<sup>2+</sup>-regulating proteins was assessed using Western Blot analysis.</p> <p>Results</p> <p>In a Small Cell Lung Cancer (H1339) and an Adeno Carcinoma Lung Cancer (HCC) cell line but not in a Squamous Cell Lung Cancer (EPLC) and a Large Cell Lung Cancer (LCLC) cell line the ER Ca<sup>2+</sup>-content was reduced compared to NHBE. The reduced Ca<sup>2+</sup>-content correlated with a reduced expression of SERCA 2 pumping calcium into the ER, an increased expression of IP<sub>3</sub>R releasing calcium from the ER, and a reduced expression of calreticulin buffering calcium within the ER. Lowering the ER Ca<sup>2+</sup>-content with CPA led to increased proliferation NHBE and lung cancer cells.</p> <p>Conclusion</p> <p>The significant differences in Ca<sup>2+</sup>-homeostasis between lung cancer and NHBE cells could represent a new target for cancer treatments.</p

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion

    Evaluating the SERCA2 and VEGF mRNAs as Potential Molecular Biomarkers of the Onset and Progression in Huntington's Disease

    Get PDF
    Abnormalities of intracellular Ca2+ homeostasis and signalling as well as the down-regulation of neurotrophic factors in several areas of the central nervous system and in peripheral tissues are hallmarks of Huntington\u2019s disease (HD). As there is no therapy for this hereditary, neurodegenerative fatal disease, further effort should be made to slow the progression of neurodegeneration in patients through the definition of early therapeutic interventions. For this purpose, molecular biomarker(s) for monitoring disease onset and/or progression and response to treatment need to be identified. In the attempt to contribute to the research of peripheral candidate biomarkers in HD, we adopted a multiplex real-time PCR approach to analyse the mRNA level of targeted genes involved in the control of cellular calcium homeostasis and in neuroprotection. For this purpose we recruited a total of 110 subjects possessing the HD mutation at different clinical stages of the disease and 54 sex- and agematched controls. This study provides evidence of reduced transcript levels of sarco-endoplasmic reticulum-associated ATP2A2 calcium pump (SERCA2) and vascular endothelial growth factor (VEGF) in peripheral blood mononuclear cells (PBMCs) of manifest and premanifest HD subjects. Our results provide a potentially new candidate molecular biomarker for monitoring the progression of this disease and contribute to understanding some early events that might have a role in triggering cellular dysfunctions in HD

    Phospholipase C-ε Regulates Epidermal Morphogenesis in Caenorhabditis elegans

    Get PDF
    Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-ε produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-γ and EGL-8/PLC-β can compensate for reduced PLC-1 activity. Our work places PLC-ε into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-ε
    • …
    corecore